
Journal, Vol. XXI, No. 1, 1-5, 2013 Additional note
A search algorithm for finding valid ping-pong subsets in RP1[1]
Samuel Perales, Jordan Grant, Jeremy Krill, Abhay Katyal, TeddyWeisman,

Jeff Danciger Department of Mathematics, The University of Texas at Austin
*Corresponding author:

Keyword1 — Keyword2 — Keyword3
...

1

February 14, 2023

Contents

Introduction 2

1 Generalized Ping Pong 3
1.1 Finite State Automata . 3
1.2 Generalization . 4
1.3 Stability Properties . 5

2 Computational Approach 5
2.1 Initializing Subsets . 6
2.2 Permeating Subsets . 7
2.3 Verifying Injectivity . 8

2.3.1 Computing λ . 8
2.3.2 Computing C . 9

3 Results and Discussion 10
3.1 Valid Subsets . 10

3.1.1 Free Product of Finite Cyclic Groups 10
3.1.2 (3,3,4)-Triangle Group . 11
3.1.3 Surface Group . 11

3.2 Notes on the Implementation . 11
3.3 Extension to RPn . 12

Acknowledgments 13

Introduction

The Ping-Pong Lemma is a well known statement in group theory which lets us prove a
group Γ is free by finding subsets of a space X which Γ acts on that meet certain conditions.
The following is a statement of the lemma from Clay and Margalit (for more background
and a proof, see [CM17]):

Lemma 0.1. Ping-Pong for n-generators Suppose {a1, . . . , an} generate a group G which
acts on space X. If

1. X has pairwise disjoint subsets {X1, . . . , Xn}, and

2. aki (Xj) ⊂ Xi for all nonzero powers k and i ̸= j,

then G is a free group, with free generating set {a1, . . . , an}.

This paper focuses on a more recent generalization of the ping-pong lemma in the context
of group actions on projective space, due to Avila, Bochi, and Yoccoz. Using this result
(stated as Theorem 1.7 below), we describe an algorithm which can calculate explicit bounds
on the size of the kernel of a representation of certain finitely generated groups into SL(2,R).
[Okay now say one sentence about finite-state automata and subsets of RP1.]

[Teddy write a paragraph about Anosov representations]

1 Generalized Ping Pong

1.1 Finite State Automata

In order to state a generalized version of the classical ping-pong lemma, we will need the
machinery of finite state automata. What follows is a summary of the subject’s basic
definitions. For more background, see for example [Ree22].

Definition 1.1. For a finitely presented groupG with finite generating setX = {a1, . . . , an},
a word in G is a finite string of k symbols which represents an element in X. We say the
length of a word is |w| = k.

When working with groups it is often convenient to treat the word and the group element
it represents as equivalent; however a single group element can be represented by an infinite
number of words, which necessitates that we choose a particular representative. Typically
the shortest representative, or geodesic word, is chosen.

Definition 1.2. If g ∈ G we define the length of g, |g| as the length of the shortest word
over X± that represents g. Words of this form are also called geodesic words.

Strings are not the only way of representing group elements, and for this paper we will
be primarily concerned with representing group elements using finite state automata.

Definition 1.3. A finite state automaton FA where A is the alphabet, or symbol set, is a
finite directed graph with edges labeled by one or more elements of A. One vertex, which
for our purposes will always be the identity, is identified as the start.

Suppose that we have a finitely presented group G and a finite state automaton FX

where X is the generating set of G. Now with the labeling associated to FX , consider a
group element g = ai1ai2 · · · ain . If we start at the vertex associated to the identity, then
by following edges labeled with the generators comprising g as a word, we construct a path
on F . If this path exists on F then I say that the word g is accepted by the finite state
automaton F . This path then becomes a new, geometric representative of g. Unlike strings,
for a given group G there is no guarantee that there exists a finite state automaton F that
accepts every element of g. If such a graph exists, then we call G an automatic group.

Definition 1.4. For a finitely presented group G, if there exists a finite state automaton
F which accepts every g ∈ G then we call G an automatic group.

Our primary objects of study in this paper will be automatic groups whose path rep-
resentatives on their associated finite state automata correspond to geodesic words. In yet
another caveat, such a finite state automaton isn’t guaranteed to exist for an automatic
group G, and when it does then G is said to be strongly geodesically automatic.

3

1.2 Generalization

In the case of classical ping-pong, for a strongly geodesically automatic group G with 2
generators which acts on a space X, the existence of valid subsets of X yields information
about the size of the kernel of the group action, namely that it is trivial. In the case of a
representation ρ : G → SL(2,R), we apply a similar idea, where valid subsets of RP1 give
us data about relations in ρ(G) ⊂ SL(2,R), which in turn determines an explicit bound on
the size of ker(ρ). To prove that this bound exists, we need to take advantage of some of
the structure of group actions on RP1.

Definition 1.5. If I is an interval in RP1 with endpoints a, b, for any x, y ∈ I, we define
the Hilbert distance dI(x, y) between x and y by

dI(x, y) = | log[a, x, y, b]|

Here [a, x, y, b] is the cross-ratio y−a
x−a · x−b

y−b , where the differences are measured in any affine

identification of RP1 with R ∪ {∞}.

Definition 1.6. For a matrix A ∈ GL(2,R), the matrix norm of A is given by:

∥A∥ = sup
x ̸=0

∥Ax∥
∥x∥

, x ∈ R2

Theorem 1.7 (see [ABY10], Theorem 2.2). Suppose Γ is a strongly geodesically automatic
group with finite generating set {a1, a2, · · · , an} and ρ : Γ → SL(2,R) is a representation of
Γ. Suppose that there exist non-empty open subsets (Mv) ⊂ RP1 with Mv ̸= RP1 for each

vertex v such that if v
α−→ u is a path accepted by the finite state automaton attached to Γ,

then
ρ(α)(Mu) ⊂ Mv.

Then there exist constants C, λ > 1 ∈ R+ such that if γ ∈ ker(ρ), then |γ| ≤
⌊ log(C)

log(λ)

⌋
.

We provide a proof of this result, because we will need some of the ideas to describe our
algorithm. The proof below is taken directly from [ABY10] (where the theorem statement
is given in slightly different language).

Definition 1.8. For a finite state automaton F , we define the set of recurrent vertices of
F as those vertex’s which have both an incoming and an outgoing arrow.

Remark. Ping-Pong sets need only be constructed for recurrent vertices on a finite state
automaton. If a vertex has only incoming arrows then the finite state automaton will fail
to define a regular language for the underlying group. If a vertex only has incoming arrows
then we can simply have its associated valid subset be the union of the implied inclusions.
Therefore for each of the valid subsets Mα in the proof below, we can safely assume that
every point in Mα lies in the image of another subset Mβ .

Proof. For each generator α, let dα be the Riemannian metric on Mα which coincides with
the Hilbert metric in each of its finite number of components. Let Kα be the closure of the
union of the sets ρ(α)Mβ where β → α. We can assume that Kα intersects each connected
component of Mα, because otherwise we can take a smaller Mα. Let Lα ⊂ Mα be an
open set containing Kα with the same number of connected components as Mα. Then each

4

componentMα,i ofMα contains a unique component Lα,i of Lα. Let λ = minα,iλ(Mα,i, Lα,i)
where

λ(Mα,i, Lα,i) = minx,y
dLα,ı(x, y)

dMα,ı(x, y)

and dMα,ı,d
L
α,ı are the Hilbert metrics on the subsets Mα,i, Lα,i respectively. Take an accepted

path on our finite state automaton v
aI1−−→ · · ·

aIk−−→ u and let A = ρ(aI1) · · · ρ(aIk). If u, v
belong to the same component of MI0 then

daIk
(Au,Av) ≤ λ−kdI0(u, v)

The metrics dα|Lα are comparable to the Euclidean metric on RP1. So if u, v belong to
the same component of LI0 we get d(Au,Av) ≤ Cλ−kd(u, v), where C > 0 is the greatest
ratio between the Euclidean and Circle metrics. This in turn implies that

||A|| ≥ C−1/2λk/2.

The explicit construction of the constants C, λ are given in sections 2.3.1 and 2.3.2
respectively.

Definition 1.9. Suppose Γ is a strongly geodesically automatic group with finite state
automaton FΓ. A collection of open subsets (Mv) ⊂ RP1, for all vertices v in the FΓ, is
called valid subsets if they satisfy the conditions of Theorem 1.7.

1.3 Stability Properties

Discussion of stability properties of these ping-pong sets, namely that they imply

2 Computational Approach

To find a collection of valid subsets for a particular strongly geodesically automatic group
Γ, finite state automate FΓ, and representation ρ : Γ → SL(2,R), we start with an initial
guess at these subsets and repeatedly refine the guess, checking for validity at each step. If
a solution is found, it is not unique, and if no solution exists, the algorithm will run forever.
The general outline for this refined guessing procedure is as follows:

1. Initialize a small subset around a point in RP1 for some vertex v of FΓ which we are
confident must be contained in the valid subset Mv.

2. For each edge of the automaton, check if containment required by the edge is satisfied
with the current configuration of intervals. If all containments are satisfied, we have
found valid subsets and we can move to step 4. Otherwise, continue to step 3.

3. For each image that failed containment, create a small open interval containing the
image and merge it with the subset which should have contained it. Then, go back to
step 2.

4. Calculate an explicit bound on the kernel of the representation based on the valid
subsets found.

5

5. Check all words of length less than N , where N is the bound on the kernel given by
the constants C and λ in Theorem 1.7. If none of the words are the identity, we know
the representation is faithful.

2.1 Initializing Subsets

In order to begin a search for a collection of valid subsets (Mv) with v a vertex in FΓ, it
helps to first identify points which each Mv must necessarily contain. Once we find these, we
can then build our subsets around them. First, we introduce some important terminology
to be used throughout the description of the algorithm.

Definition 2.1. For ϵ > 0 and a point x ∈ RP1, let the ϵ-neighborhood of x be

Nϵ(x) = {z ∈ RP1 : d(x, z) < ϵ}

Definition 2.2. The singular value decomposition of a matrix M ∈ R2x2 is the factorization
M = UΣV T where U is an orthogonal matrix with columns called singular directions, Σ is
a diagonal matrix of singular values, and V T is the transpose of another orthogonal matrix.
We denote the greatest singular value of M as σmax(M) and its associated singular direction
vmax(M).

Lemma 2.3. Suppose (Ai) is a sequence of SL(2,R) matrices, with singular value decom-

position Ai = Ui

(
λi 0
0 λ−1

i

)
V ∗
i and suppose also that the sequences of left and right,

singular vectors σi
R,1, σ

i
R,2, σ

i
L,1, σ

i
L,2 converge to σR,1, σR,2, σL,1, σL,2. Suppose also that

limi→0 λi = ∞. Then for any x ∈ RP1/{σR,1}

lim
i→0

Ai(x) = σR,1

Proof. Since the singular vectors converge

lim
i→0

Ai(x) = lim
i→0

(
σi
R,1 σi

R,2

)(λi 0
0 λ−1

i

)(
σi
L,1 σi

L,2

)
= lim

i→0

(
σR,1 σR,2

)(λi 0
0 λ−1

i

)(
σL,1 σL,2

)
Since each Ai ∈ SL(2,R) our Ui, Vi are rotations of the form(

cos(θi) −sin(θi)
sin(θi) cos(θi)

)
= Ui,

(
cos(ϕi) −sin(ϕi)
sin(ϕi) cos(ϕi)

)
= Vi

Therefore the limits of our right hand singular vectors, σR,1, σR,2, are

(
cos(θ)
sin(θ)

) (
−sin(ϕ)
cos(ϕ)

)
with θ, ϕ ∈ [0, 2π) respectively. Now suppose x = a1e1 + a2e2, and consider lim

i→∞
Ai(x).

lim
i→∞

Ai(x) = lim
i→∞

a1A(e1) + a2A(e2)

= lim
i→∞

(λi(a1cos(ϕi) + a2sin(ϕi))σ
i
R,1 + λ−1

i (a1sin(ϕi) + a2cos(ϕi))σ
i
R,2)

= lim
i→∞

λi(a1cos(ϕ) + a2sin(ϕ))σR,1 + lim
i→∞

λ−1
i (a1sin(ϕ) + a2cos(ϕ))σR,2

= lim
i→∞

λi(a1cos(ϕ) + a2sin(ϕ))σR,1

6

Since σR,1, σR,2 form an orthonormal basis for R2, we can write this limit in this coordinate

scheme as lim
i→∞

(
λi(a1cos(ϕ) + a2sin(ϕ))

0

)
= lim

i→∞

(
λi

0

)
=

(
∞
0

)
. Projectivizing both sides

of the above equation to RP1 then yields

lim
i→∞

[Ai(x)] =

[(
∞
0

)]
which is identified with the basis vector σR,1.

Theorem 2.4. Suppose that we have a representation ρ : G → SL(2,R) where G is a finitely
presented automatic group with finite state automaton FG, generating set (A1, · · · , An), and

a set of valid subsets (Mv) ⊊ RP1. Then for any vertex v on F , if v
Ai1−−→ · · · Aim−−−→ u is an

accepted path on FG and (V m) is the sequence of maximal singular directions defined by the
product sequence V m = vmax(B

m) = vmax(ρ(Ai1) · · · ρ(Aim), then every accumulation point
of (V m) lies in Mv.

Proof. If we consider a vertex v on F , then due to the direction of the inclusions described

in theorem 1.7, a path v
Ai1−−→ · · · Aim−−−→ u defines an inclusion ρ(Ai1) · · · ρ(Aim)(Mu) ⋐ Mv

where Mu,Mv ⊊ RP1 are valid subsets. Now suppose that the limit of maximal singular
directions lim

m→∞
V m = v0 lies outside of Mv. Then by 2.3, lim

m→0
Bm(Mu) = s0 /∈ Mv, implying

that for every x ∈ Mu there exists some n0 ∈ N such that Bn0(x) /∈ Mu, contradicting our
assumption that Mu and Mv are valid subsets.

By taking paths starting at a vertex v through FΓ and considering the maximal singular
directions of matrices represented by these paths, we can get approximations of a point that
we know must be inside the valid subset Mv.

To start the algorithm, we choose a vertex v0 and a random path v0
A1−−→ · · · An−−→ vn of

our finite state automaton with some large length n (explicitly, our code uses n = 100). We
take the singular direction with largest singular value of the matrix An · · ·A1 associated to
this path, vmax(A1 · · ·An), and set our initial guess at subset M0

v to be Nϵ(vmax). We set
all other subsets to initially be the empty set.

2.2 Permeating Subsets

Once the subset M0
v is initialized, we can start to compute what the valid subsets must

be. This is done by a method which we call patching. Suppose the finite state automaton
associated to our automatic group requires AkMv ⊂ Mu. We can then update our guess for
interval Mu to be:

M i+1
u = M i

u ∪Nϵ(AkM
i
v)

In general, if the finite state automaton has multiple outward pointing edges at vertex u
corresponding to multiple containment conditions required by Theorem 1.7, we can update
our guessM i+1

u to be the union ofM i
u and all Nϵ(AkM

i
v) given by the finite state automaton.

7

By taking the union of our previous guess with all of these ’patches’ around the necessary
images, we guarantee that M i+1

u contains all AkM
i
v and therefore satisfies all containment

conditions required by Theorem 1.7. Note that although the ping-pong Lemma requires
subsets to be connected, the generalized statement of ping-pong allows our subsets to be
disconnected.

Since updating our guess for Mu causes it to grow, the containment conditions of other
subsets may break after iterating. Each iteration of the algorithm, all subset guesses are
sequentially patched. If none of the subsets grow during an iteration, we know that all
containments conditions have been satisfied and that our collection (Mv) of subsets are a
set of valid subsets for the representation.

2.3 Verifying Injectivity

Theorem 1.7 implies that if the algorithm described above terminates after finding valid
subsets of RP1, then the maximum word length of any group element in the kernel of the
representation ρ : G → SL(2,R) we are working with is bounded by an expression in terms
of certain constants λ, C. [recall what λ and C are here.] To verify that the representation
ρ is actually faithful, we compute λ and C explicitly, and then check that ρ(g) is nontrivial
for every g ∈ G with |g| < log(C)/ log(λ).

2.3.1 Computing λ

Let us first expand the definition, supposing that the subsets Lα ⊂ Mα have endpoints
[−c, c] ⊂ (−1, 1) ⊂ R ∪ {∞} under the projective chart P defined in section 1.2:

λ = min
α,i

λ(Mα,i, Lα,i)

= min
α,i,x,y

dMα,ı(x, y)

dLα,ı(x, y)

= min
α,i,x,y

log[−c, x, y, c]

log[−1, x, y, 1]

= min
α,i,x,y

log(y+c
x+c

x−c
y−c)

log(y+1
x+1

x−1
y−1)

To find this minimum we take derivatives of the resulting function which we call f . We
get that fy(x, y) = 0 and

fx(x, y) =
(1
x−1 − 1

x+1)(log
x−c
y−c + log y+c

x+c)

(log x−1
y−1 + log y+1

x+1)

leaving us with critical points along the x-axis with x = ±1,±c, 0. However, since we only
care about x, y ∈ (−c, c), we can ignore all of these except for the origin, which must be the
minimum. Therefore

λ = min
α,i

lim
(x,y)→(0,0)

log(y+c
x+c

x−c
y−c)

log(y+1
x+1

x−1
y−1)

=
1

c

8

Now we have an explicit value for λ given that the nested subsets are symmetric and centered
about 0 under P . Since [a, x, y, b] = [A(a), A(x), A(y), A(b)] for A ∈ SL(2,R) and there is
always such a transformation that will take four points of RP1 to four of the form [−c, c] ⋐
(−1, 1), we can always explicitly compute λ in this way.

2.3.2 Computing C

Let Mai
be a component of some Mα with endpoints F,H. and we take a closed interval

[c, d] ⊂ [F,H] ⊊ RP1. We want to be able to compare this metric to the round metric ds
on S1. For simplicity’s sake, we first rotate [F,H] until it is of the form [−a, a] for some
a ∈ R+. We then make a comparison of the Hilbert metric to the standard Euclidean metric
on R pointwise on the interval [c, d], which we do by using the ratio of the Hilbert distance

| log(x+ a

x− a
· x+ h+−a

x+ h+ a
)|

to the euclidean distance h, as h → 0, which is simply the derivative of the Hilbert distance.

lim
h→0

| log(x+a
x−a

x+h+−a
x+h+a)|

h
=

2a

a2 − x2

We then make the same comparison between the round distance and euclidean distance,

which is simply the derivative of arctan(x),
1

1 + x2
.

We now want to find two constants D1, D2 for our interval [c, d] which satisfy the in-
equality

D−1
1 dI(u, v) ≤ ds(u, v) ≤ D−1

2 dI(u, v).

For D1 we want to maximize the Hilbert distance while also minimizing the round dis-
tance, therefore we aim to maximize 2a

a2−x2 , and minimize 1
1+x2 . For D2 we do the inverse,

minimizing 2a
a;−x2 and maximizing 1

1+x2 . Have x0 = max{|c|, |d|} and y0 = min{|c|, |d|}.
Then,

D1 =
2a(1 + x2

0)

a2 − x2
0

D2 =

{
a
2 c < 0 < d
a2−y2

0

2a · 1
1+y2

0
otherwise

Referring back to our notation from theorem 1.7, if one of our Mα,i has n connected Lα,i,
then we repeat this process for every Lα,i yielding a family of Di

1, D
i
2’s. We set C1 =

max
1≤k≤n

(Di
1), C2 = min

1≤k≤n
(Di

2). Then referring back to our equation at the end of theorem

1.7,
C−1

1 ds(Au,Av) ≤ daIk
(Au,Av) ≤ λ−ndaI0

(u, v) ≤ C−1
2 λ−kds(u, v)

ds(Au,Av) ≤ C−1
2 C1λ

−kds(u, v)

C = C−1
2 C1

9

3 Results and Discussion

3.1 Valid Subsets

Our algorithm was able to compute explicit subsets of RP1 which meet the conditions of
Theorem 1.7 and verify the faithfulness of the representations in a number of simple ex-
amples. The following subsections include the group presentation, SL(2,R) representation,
and valid subsets of RP1 mapped to [0, π).

3.1.1 Free Product of Finite Cyclic Groups

As an initial test of the algorithm, we input free products of finite cyclic groups with
presentations of the form:

⟨a, b|an = bm = 1⟩

We created representations for these groups by mapping a to a rotation by π
n and b to a

conjugated rotation by π
m . In particular, this example shows valid subsets for n = 2 and

m = 3. We note that there are often multiple finite state automata which can describe a
group, but any choice will work with the algorithm. Below, you’ll find examples of a couple
finite state automata for a free product of cyclic groups with orders 2 an 3 (for computing
our valid subsets, we used the left-most graph):

Figure 1: Several finite-state automata for free products of cyclic groups with n = 2,m = 3

Figure 2: Valid subsets for a representation of a free product of finite cyclic groups with
n = 2,m = 3

10

3.1.2 (3,3,4)-Triangle Group

We used the following presentation of the (3,3,4)-triangle group along with the usual geo-
metric representation to try and find valid ping-pong subsets:

⟨a, b, c|a2 = b2 = c2 = 1, (ab)3 = (ac)3 = (cb)4 = 1⟩

Figure 3: A finite-state automaton which describes the (3,3,4)-triangle group

3.1.3 Surface Group

Our third test case was the surface group:

⟨a, b, c, d|adc−1ba−1d−1cb−1 = 1⟩

along with a the representation given by
We note that with certain presentations of surface groups, small numerical errors tended

to diverge forcing us to run the algorithm with interval expansion values of ϵ < 10−6.
In these cases however, the trade-off was runtime. Without further optimized code, it is
unlikely to find valid subsets for presentations such as the one below:

⟨a, b, c, d|[a, b][c, d] = 1⟩

which comes with a one-parameter family of representations given by

3.2 Notes on the Implementation

There are several potential speed and memory improvements which could be made to
broaden the range of representations which the algorithm is able to find valid subsets for.

11

Figure 4: Valid subsets for a triangle group representation

Figure 5: A finite-state automaton which describes the surface group (edge labels omitted)

3.3 Extension to RPn

Not all groups can be represented in RP1. Instead, to develop and apply an extension of
this algorithm to these groups would mean searching for our subsets in RPn. Many of the
underlying mechanics would remain in place, the primary change being the way subsets are
stored and permeated.

In RP1, the subsets we are tracking are simply intervals of the form (a, b). As a first step,
moving to RP2 requires a choice; should subsets be calculated as balls, cubes, tetrahedrons,

12

Figure 6: Valid subsets for a surface group representation

perhaps some other shape? The simplest approach that we would recommend is initializing
subsets as tetrahedrons centered about maximal singular directions and patching intervals
by taking the convex hull of the points which make up a subset and open subset over the
images it must contain.

This extension to higher dimensions of real-projective space is necessary to expand our
input to other groups, but it would also be interesting to see if representations of groups
we’ve already demonstrated could be moved to SL(n,R) for faster convergences or tighter
bounds on the kernel.

Acknowledgments

Thanks Teddy
Thanks Jeff
Thanks NSF

References

[ABY10] Artur Avila, Jairo Bochi, and Jean-Christophe Yoccoz. “Uniformly hyperbolic
finite-valued SL(2,R)-cocycles”. In: Commentarii Mathematici Helvetici (2010),
pp. 813–884. doi: 10.4171/cmh/212. url: https://arxiv.org/pdf/0808.
0133.pdf.

[CM17] Matt Clay and Dan Margalit. Office Hours with a Geometric Group Theorist.
Princeton University Press, 2017. isbn: 9781400885398. doi: doi : 10 . 1515 /
9781400885398. url: https://doi.org/10.1515/9781400885398.

13

https://doi.org/10.4171/cmh/212
https://arxiv.org/pdf/0808.0133.pdf
https://arxiv.org/pdf/0808.0133.pdf
https://doi.org/doi:10.1515/9781400885398
https://doi.org/doi:10.1515/9781400885398
https://doi.org/10.1515/9781400885398

[Ree22] Sarah Rees. The development of the theory of automatic groups. 2022. doi: 10.
48550/ARXIV.2205.14911. url: https://arxiv.org/abs/2205.14911.

14

https://doi.org/10.48550/ARXIV.2205.14911
https://doi.org/10.48550/ARXIV.2205.14911
https://arxiv.org/abs/2205.14911

	Introduction
	Generalized Ping Pong
	Finite State Automata
	Generalization
	Stability Properties

	Computational Approach
	Initializing Subsets
	Permeating Subsets
	Verifying Injectivity
	Computing
	Computing C

	Results and Discussion
	Valid Subsets
	Free Product of Finite Cyclic Groups
	(3,3,4)-Triangle Group
	Surface Group

	Notes on the Implementation
	Extension to RPn

	Acknowledgments

