
Computational Imaging Report

UC2 FPM, DiffuserCam, and Speckle Imaging

REU: Christina Dong, Erin Obermayer, Samuel Perales, Xingzi Xu
HMC: Alec Vercruysse, Rosey Sams, Shreya Sanghai

Advisor: Joshua Brake

May - July 2020



Computational Imaging Data Science REU, HMC

Contents

1 Introduction 2

2 Background 3

2.1 Fourier Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Phase Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Point Spread Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Convolution & Autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Methods 9

3.1 UC2 FPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 DiffuserCam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Speckle Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Results 25

4.1 UC2 FPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Diffuser Cam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Potential Future Work 32

5.1 UC2 FPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2 Diffuser Cam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3 Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Conclusion 33

Page 1 of 35



Computational Imaging Data Science REU, HMC

1 Introduction

Conventional lens imaging systems are heavily integrated in our day-to-day lives. These imaging
systems are also deeply important to biomedical fields for the ability to image through biological
tissue. While the uses and applications are diverse, these imaging devices all rely on lenses.
Thus, the pursuit of improving imaging systems is often in tandem with producing better or bigger
lenses. However, this makes high quality imaging systems costly and larger, which ultimately limits
accessibility. With modern advancements in computers, it is possible to utilize the computer to
overcome the issue of accessibility with lens imaging systems.

Previous advancements in the field of computational imaging including Fourier ptychographic
microscopy (FPM) by Zheng, et. al. in 2013 [1]; the UC2 system by Diederich, et. al. in 2020 [2];
single-exposure 3D imaging by Antipa, Kuo, et. al. in 2018 [3]; and speckle imaging by Katz, et. al.
in 2014 [4] have made our exploration into these computational imaging techniques possible. In
this report, we describe and implement three different computational imaging systems: UC2 FPM,
DiffuserCam, and Speckle Imaging.

The goal of the UC2 FPM project is to achieve high space-bandwidth product (SBP) and field-of-
view (FOV) in low-quality lens imaging systems by merging the development of the UC2 System with
FPM. The SBP is a metric which measures the resolution of an image, and the FOV quantifies the
size of the image. The UC2 System is an open-source, low-cost optical toolbox that has been proven
to be customizable and versatile, and characterized to be what Arduino is for electronics [2]. FPM
is a computational technique that allows us to obtain higher resolution images. Together, UC2 and
FPM create an accessible, low-cost, and high-quality microscopy system.

Another way to keep imaging systems at a low cost is to remove the lens. DiffuserCam works
to construct 3D images from a single, lensless, 2D data measurement [3]. Speckle imaging works
to non-invasively image through scattering mediums, such as biological tissues, by using known
properties of the scattering medium in place of a lens [4]. Prior to the development of computers,
lenses were the preferred method of imaging objects due to its simple transfer function. However,
if the transfer function of a random object is known, said random object can replace the lens in an
imaging system, and we can utilize a computer to handle its complex transfer function. Both the
DiffuserCam and speckle imaging exploit this idea to image objects.

The goal of these projects was to show proof of concept for each computational imaging system,
which included working with both hardware and software. We were able to successfully build the
physical systems and have reached the stage of troubleshooting and optimizing each system. We
also implemented the necessary software for image processing, but recognize that the processed
images’ quality can still be improved.

This report will first cover several topics to aid in the understanding of computational imaging
systems: Fourier optics, phase retrieval, point spread functions, convolution and autocorrelation. In
the Methods section, we go over the theory, hardware, and software for each project. We then will
discuss the progress and results we found and made in each project in Results. Following this, we
talk about how each project can be continued in Potential Future Work.
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2 Background

2.1 Fourier Optics

The Fourier transform has been a powerful mathematical tool used for centuries to deconstruct
an input signal into the amplitudes and frequencies of the sine waves that compose it. Typically, one
might consider input waves to be electrical signals or sound waves, but the foundation of a large
portion of modern day optics is considering the 2-dimensional Fourier transform of an input image.
The use of Fourier transform is quite natural since one of the properties of a traditional lens is that
the pair of focal planes of the lens are Fourier conjugate. This means that a lens can actually be
used to take a Fourier transform of some input image.

Each point of the Fourier transform spectrum represents a two-dimensional sine wave’s direction,
frequency, and amplitude, such that when all of the sine waves are added together, we get the
original image. Once we know the spatial frequencies of an input image, we can filter and manipulate
them such that performing an inverse Fourier transform will result in some desired outcome. An
example of this is shown in Fig. 1.

Fig. 1: By filtering out lower frequencies (High Pass Filter) and inverting the Fourier transform, we get edge detection. By
filtering out higher frequencies (Low Pass Filter) and inverting, we get image compression.

A common setup in optics in the 4 f System. This is a setup in which two lenses are placed at
each others focal length. The first lens acts as a ”beam expander” by taking some input light and
collimating it. The light then passes through some transparent image and into the second lens. This
second lens then takes the Fourier Transform of the image and outputs it. This system is an easy
way to capture the Fourier Transform of some sample.

Each project utilizes the Fourier transform in some capacity; it can be used in many different
algorithms to recover information that initially appears to be missing from our captured image data.
The scipy. f f t pack module in Python can simulate FT and IFT in one or two dimensions.
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2.2 Phase Retrieval

Fig. 2: Without phase information of an object, cameras can’t capture a complete measurement of that object. A
reconstruction using phase retrieval algorithms must be performed to get a better image. Image from Fienup’s 1978
paper [5].

Light waves are composed of a magnitude and phase. However, light waves oscillate so quickly
that most electronics cannot measure the phase information of the wave. In Fig. 2, the discrepancy
between the object and measurement images shows the importance of phase information to an
accurate image. Thus, phase retrieval algorithms are used to recover the lost phase information to
produce better images. The iterative process of phase retrieval algorithms is shown in Fig. 3 below.

Fig. 3: General outline of phase retrieval algorithms. n denotes spatial coordinates, and k denotes Fourier coordinates.

Most phase retrieval algorithms follow the steps:

1. Initialize algorithm by defining the light wave equation using either a measured or approximated
spatial magnitude along with a spatial phase guess, which gives zi[n].
2. Fourier transform zi[n] to obtain Zi[k].
3. Impose Fourier magnitude constraints but keep Fourier phase the same to obtain Z

′
i [k].

4. Inverse Fourier transform Z
′
i [k] to obtain z

′
i[n].

5. Impose any spatial constraints to obtain z
′
i+1[n]. This will be fed into the next loop of the algorithm.
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Many different phase retrieval algorithms follow this outline and differ only in step 5 or the block
highlighted in blue in Fig. 3. For instance, in the Gerchberg-Saxton (GS) algorithm, the spatial
constraint would be the spatial magnitude, necessitating the knowledge of both the object’s Fourier
and spatial magnitude in order to retrieve phase. The GS algorithm would work for two measurement
imaging systems, with the two measurements being the spatial and Fourier magnitude.

There also exists algorithms for single measurement imaging systems, with the single measure-
ment being the Fourier magnitude. For example, the hybrid-input output (HIO) method is one such
algorithm and uses the following constraint:

zi+1[n] =

{
z
′
i[n], n /∈ γ

zi[n]−βz
′
i[n], n ∈ γ

with β being a parameter close to unity (typically between 0 and 2), and γ being the set of conditions
for which z

′
i[n] violates the real spatial constraints. These constraints are typically realness and

positivity.

Another single-measurement, phase-retrieval algorithm is the error reduction (ER) method. ER
uses the following constraint:

zi+1[n] =

{
z
′
i[n], n /∈ γ

0, n ∈ γ

with γ having the same definition as in the HIO method.

Both the HIO and ER method are used in the speckle imaging project to reconstruct images. Fur-
thermore, the idea of using algorithms in image reconstruction is prevalent in all three projects. There
are many other algorithms such as Input-Output method, Output-Output method, OSS algorithm, etc.
For more detail on these methods, see [5] and [6].
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2.3 Point Spread Functions

A traditional imaging system usually has a point-to-point mapping of light; a single input source
of light will result in a point source output. In many cases of computational imaging, however, an
input point source of light will output a complex pattern, due to the function of the system and how
light is refracted. These outputs, called point spread functions (PSFs), can be used to describe the
transfer function of an optical system, see Fig. 4.

Fig. 4: As a point source of light is sent through the DiffuserCam, the output (PSF) is a unique caustic pattern. Image
from Antipa’s 2018 paper [3].

Lensless imaging has sparked a strong interest in the field of optics because of its accessibility.
These systems replace a standard lens with a diffuser or other unconventional materials with varying
textures and opaqueness. When light is sent through these materials, it refracts light differently
depending on the surface creating unique point spread functions. The information encoded in these
PSFs along with algorithms can then be used for image reconstruction.

Shift invariance refers to the behavior of PSFs. If an input point source is moved laterally or
axially, the pattern that is created should remain the same pattern, only shifted with respect to the
point source. Fig. 5 shows the shift invariance of the DiffuserCam system. A system is defined as
linear shift invariant if it demonstrates that the output intensity is directly proportional to the input
intensity. Therefore, if the input intensity is doubled, the output is doubled as well.

Fig. 5: Shift invariance of the DiffuserCam. When an input point source is shifted laterally (a) or axially (b), the output
PSF shifts accordingly. Image from Antipa’s 2018 paper [3].
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2.4 Convolution & Autocorrelation

Convolution

Convolution is widely used in signal processing. Electrical engineers have created this scheme
where we can describe a system and an input signal with separate and different mathematical
equations. Under this scheme, the output signal is the convolution of the system function and the
input signal function. Similarly to how FT was adapted from 1-D signals to 2-D images, convolution
can also be used in 2-D images. Fourier optics is a good example of this, since the output image we
see is the convolution between the input image and the imaging system.

Fig. 6: Visualization of convolution: output image is formed by convolving the PSF with the input object image.

Mathematically, a one dimensional discrete convolution is described as:

y[n] = x[n]∗h[n] =
∞

∑
l=−∞

x[l] ·h[n− l].

Here, the ∗ sign indicates convolution, x[n] is the input signal, h[n] is the system transfer function,
and y[n] is the output signal. n is the indexing variable, and l is the dummy variable.

All three projects are heavily involved with convolution, as it gives a mathematical way to
model our imaging systems. Specifically, when simulating convolution with Python, we can use the
scipy.signal.convolve module.

We can also simulate convolution with FFT (fast Fourier transform) and IFFT (inverse fast Fourier
transform) methods:

conv(g,h) = IFFT{FFT{g} ·FFT{h}}

.

We have created a convolution demo in Google Colab for future students to better understand the
mathematical operation. This demo covers 1D manual convolution, convolution using the imported
Python numpy library, 2D convolution, and convolution with the Fourier Transform. The notebook can
be found here: https://colab.research.google.com/drive/1VBZz96F-bM80jlkdtUnh7PZaKCivpjXm?
usp=sharing.
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Autocorrelation

Autocorrelation describes the similarity a signal has with itself over a certain dimension. For
instance, we expect the temperature tomorrow be more similar to the temperature today than the
temperature two months later. Thus, if we take the autocorrelation of the temperatures over the time
dimension, we will have a higher autocorrelation value tomorrow than two months later.

Mathematically, a one dimensional autocorrelation can be described with convolution. Specifi-
cally:

cxx[n] = x[−n]∗ x[n] =
∞

∑
l=−∞

x[−k]x[n− k].

Here, cxx[n] is the autocorrelation, x[n] is the function whose autocorrelation is calculated, and the
symbol ∗ indicates convolution. Again, n is the indexing variable, and k is the dummy variable.

Fig. 7: Example shows relationship between object and its autocorrelation.

The most effective way to simulate autocorrelation in Python is also using FFT and IFFT. The
steps is as follows:

1. Fourier transform function.
2. Multiply the result of Step 1 by its conjugate.
3. Take the inverse Fourier transform of the result of Step 2.

Autocorrelation is at the core of the speckle imaging project, where autocorrelation is used to get
rid of the random speckle pattern to aid in the image reconstruction process.
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3 Methods

Raspberry Pi and Pi Camera

Either to decrease cost or to create an open source research environment, all three projects
have chosen to use a Raspberry Pi controlled Raspberry camera. A Raspberry Pi is a mini computer
running an OS of its own. It uses an SD card for memory storage, and it outputs HDMI signals to
a monitor. A very useful website for debugging problems in setting up a Raspberry Pi is [7]. The
Raspberry Pi camera captures an accumulation of light. As shown in Fig. 8, saturated pixels can
damage the speckle patterns containing crucial information. Thus, it is very important to make sure
that camera pixels don’t get saturated via control over exposure time. ISO is also an important
parameter to look at, as it specifies whether the camera is capturing image in a dark or bright
environment.

Fig. 8: Saturated images can damage crucial speckle pattern information. Units in px.
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3.1 UC2 FPM

Theory

Fourier Ptychographic Microscopy (FPM) [1] is a computational imaging method in which, by
taking images of a sample from varying illumination angles at a high FOV, we capture information
about different parts of the sample’s Fourier spectrum. Using an iterative algorithm, we can ’stitch’
these various images together in Fourier space after which an inverse Fourier Transform will yield
a higher resolution image. The goal of UC2 FPM is to implement this algorithm with the low-cost,
3d-printed, and modular UC2 open-standard system.

Fig. 9: Image acquisition consists of illuminating a sample from the N2 different LEDs on an N x N matrix. Images taken
with LEDs at a larger angle with the sample must have a longer exposure time to correct for lower amounts of light
reaching the sensor. Image from FPM paper [1].

The procedure of FPM after image acquisition is as follows:

1. Estimate a high-resolution reconstruction of the sample as an up-sampled acquired image and
take the Fourier Transform of this estimate.
2. Select a subregion of the estimated image spectrum and take its Inverse Fourier transform to get
a low-resolution image estimate for that subregion. This subregion will correspond to an LED used
to take an image.
3. Compare the estimated low-resolution image with the corresponding acquired image and update
the estimate accordingly.
4. Fourier transform the updated low-resolution image estimate and update the spectrum subregion
of the high-resolution estimate.
5. Repeat this process of updating various subregions for all acquired images.
6. Inverse Fourier transform the fully updated spectrum to recover a high-resolution image of the
sample with phase information.

Hardware

UC2 [8] defines several low-cost ”modules” that can be assembled to make an imaging system.
It also includes the hardware required to align the modules on a baseplate. UC2 consists of 50mm
unit cubes in which different inserts can be added to interface with different components. Although
UC2 is designed to be a 4f-system, an infinity-corrected system (meaning that the system that has a
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focal point at infinity) can be set up such that the length between the Microscope Objective (MO) and
tube lens can be varied while still keeping the image focused on the sensor plane.

The setup consists of the ASSEMBLY CUBE LED Matrix v2 and ASSEMBLY CUBE Z-STAGE v2
modules to house the LED array and sample respectively, as well as a custom camera module
designed to incorporate the Raspberry Pi High Quality Camera, which was not yet supported by UC2.
All modules which contained electronics used the MQTT API in order to communicate, conforming to
UC2’s MQTT specification.

Fig. 10: UC2 Setup. a) HQ RPI Camera, b) Microscope Objective, c) Z-Stage, d) Adafruit NeoPixel 8x8 LED Array

The custom High Quality camera module was designed in order to interface with the new
Raspberry Pi HQ camera. The original design used a 2u (100mm x 50mm) cube, with a custom
insert designed for both the camera board as well as a 16mm machine vision lens. The machine
vision lens was later taken off in the final design in order to increase the magnification (therefore
turning the setup to a finite-corrected system, a system with a finite focal point). A Raspberry Pi was
used to take images and also interface with the modules containing the LED matrix and Z-stage
stepper motor. The camera uses a Bayer color filter array in order to capture color information but
because our images are taken under red light, this causes the images to be very sparse. Due to this
limitation, in order to sample at the diffraction-limited Nyquist frequency fn = 1/2∆t of the setup, the
spatial frequency of the pixels on the sensor had to be double the Nyquist frequency.

The ASSEMBLY CUBE LED Matrix v2 module was designed to hold the LED matrix used for the
system. It was slightly adapted from the original specification in order to support the mounting hole
locations for the matrix we used, an Adafruit NeoPixel 8x8 NeoMatrix. The WS2812B LEDs that the
matrix uses contain a diffuser in order to provide a visually appealing mix of colors when multiple
color channels were turned on. In practice, this meant that the LEDs were more likely to violate the
point source assumption that is made in the calculations of FPM. For this reason, a “mask” was
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3D printed which included 2mm diameter holes through which each LED could shine. An ESP32
subscribed to a MQTT broker on the Raspberry Pi was used to interface with the LEDS.

The ASSEMBLY CUBE Z-STAGE v2 module was used in order to be able to translate the MO
in the Z-direction (along the optical axis of the system) in order to provide fine-tuned control over
focusing. It used a ’lead-screw’ style design, using an M3 screw and nut, to convert the rotation of
the low-cost 28BJ-48 stepper motors into linear motion, and a linear flexure bearing-based design
to allow for the entire module to be 3D printed, other than electronics, screws, and nuts. Another
ESP32 was used to interface with the stepper motor driver.

Software

We implement an iteration of FPM which includes Embedded Pupil Recovery (EPRY) [9] so
that we can recover information about the aberrations within our system and improve the overall
reconstruction. The ’pupil’ of the system is the function that the objective lens performs on the image
passing through it. The pupil can often have some minor aberrations which cause artefacts in the
reconstruction. By estimating this function with EPRY, we can take the aberrations into account.

Fig. 11: FPM on simulated blood smear data. a) 64 Low-resolution acquired images. b) A later iteration of FPM showing
the current high-resolution estimate along with its estimated spectrum. c) Fully recovered high-resolution image along
with its phase (Note that these recovered images are 4x the size of the input images). Images from advisor Josh Brake.

Because of the limitations of the physical system, images require some processing prior to being
input into the algorithm. There are three primary parts of processing: demosaicing, denoising, and
image segmentation.

Demosaicing: The Raspberry Pi HQ Camera comes included with a bayer filter (BGGR specifi-
cally). This essentially designates each pixel a specific color channel (red, green, or blue) as opposed
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to having each pixel be three channels. Because we take our images under red light only (using
multiple wavelengths renders image / phase recovery extremely difficult) we are left with a very
sparse red-channel image.

Fig. 12: An acquired image (left) of a transparency sample can be seen in MATLAB as sparse (middle). Using the built in
demosaic function, we can interpolate the missing data in the image (right).

Denoising: We try to minimize external light passing through the sample by placing a mask
on the objective and taking images at night but inevitably, some noise will end up on the sensor.
Denoising had already been implemented in the open-source MATLAB code provided by Tian Labs
so all this required was adjusting some of the parameters. Noise is estimated for each acquired
images by looking at multiple subregions of the image which correspond to the background and
averaging the values in these regions together. This average value is then compared to some
threshold to see whether this is truly noise or an important part of the image. In the case that
it is determined to be noise, we subtract this value from each pixel to essentially cancel out the
background of the image.

Image Segmentation: Running simulations on EPRY-FPM is not computationally intensive
as the input images are simulated to be relatively small for efficiency (128x128). In practice, the
Raspberry Pi HQ Camera captures images of size 4056x3040. 64 images of this size from each of
the LEDs on the array makes running the algorithm highly inefficient and requires that we optimize.
To do this, each image is segmented into n by n subregions which the algorithm runs on separately.
Each image is then stitched back together to recover the full image. This improves the speed of the
algorithm but suffers from imperfect recovery as the stitches between each subregion can be highly
visible.

To solve this, we pad each of the subregions by some amount such that they overlap with the
adjacent subregions. This decreases the contrast between the reconstructions and preserves the
improved recovery time. The amount of padding is restricted by how small the subregions are but
we’ve found that around 10-20 pixels of padding is the most useful. Fig. 13 shows figures with and
without padding.

Image segmentation also allows for the recovery of the spatially varying pupil functions which
is very useful since an aberration may be different from various angles. This means we get both
a faster and higher quality reconstruction after a sufficient amount of padding is included. Fig. 14
shows the relationship between recovered pupils and padding.

Page 13 of 35



Computational Imaging Data Science REU, HMC

Fig. 13: Here the seam can be seen in the unpadded reconstruction (left) and is less visible in the padded reconstruction
(right).

Fig. 14: Recovered pupils for different amounts of segmentation. More specific pupils are recovered as the image is
segmented more.
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3.2 DiffuserCam

Theory

Using the simple, inexpensive lensless optical system called DiffuserCam, it is possible to perform
high resolution, 3D image reconstruction using a stack of point spread functions and a single-shot,
2D data measurement of the object. A simple linear combination problem is used to represent the
problem, b = Hv, where b and v are vectors representing the 2D sensor measurement and the
intensities of the 3D reconstructed image, respectively, and H is a forward model matrix whose
columns consist of the caustic patterns (the PSFs of this system) at each point in the 3D field of view.

Obtaining each individual caustic pattern in the FOV would require an infinite number of mea-
surements, therefore H is very large and difficult to define. H is also not necessarily invertible, so an
`1 regularized, non-negativity-constrained, inverse optimization problem is required to solve for v,

v̂ = argmax
v≥0

1
2
‖ b−Hv ‖2

2 +τ ‖Ψv ‖1 (1)

where τ is a tuning parameter that adjusts the degree of sparsity, Ψ is the identity matrix (Ψv is
mostly zeros), and ‖Ψv ‖1 is the 3D total variation semi-norm, which reduces the noise in the image.
In the system, an aperture is used so that the data measured on the sensor does not fill the entire
sensor. Therefore, there is some space on the sensor on which theoretically no light is supposed to
be picked up. The sparsity term helps us to get rid of the small amount of excess light that is picked
up by the sensor.

The system is linear shift invariant, so compressed sensing is used to solve the underdetermined
inverse problem. A convolutional forward model is used to compute Hv. This avoids having to define
H explicitly, which is extremely complex. Using this model also simplifies the calibration of the system
because we assume shift invariance. In theory, only one calibration image of an on-axis point source
is needed. However, in practice, capturing a stack of PSFs from different distances from the diffuser
produces better results.

The inverse problem is then solved using iterative algorithms: Gradient Descent and the Alternat-
ing Direction Method of Multipliers (ADMM). However, since ADMM converges faster, it is the more
efficient algorithm to use for 3D image reconstruction. Image reconstruction is performed in 300
iterations.

Hardware

The DiffuserCam setup consists of a diffuser placed at a set distance from a sensor, as seen in
Fig. 15.
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Fig. 15: The template setup for DiffuserCam. Image from DiffuserCam paper [3].

The diffuser can be any transparent, thin, smooth material, so we used scotch tape (as recom-
mended in the camera building tutorial seen [10]). A Raspberry Pi Camera with the lens removed
serves as our sensor. Note that it responds linearly to incident light, which is necessary for the
system’s linear shift invariance property. The diffuser refracts a point source of light, resulting in a
caustic pattern PSF seen in Fig. 28. When an object is imaged, there is more than one point source
of light being sent through, so it is equivalent to many different caustic patterns overlapping each
other, which results in a blurred image of raw data, see Fig. 16.

Fig. 16: The raw data measurement of a 3D object captured on the 2D sensor, from Antipa’s 2018 paper [3].

The Raspberry Pi camera comes with a lens, so before capturing images we had to carefully
remove the lens to expose the sensor. The sensor picks up the caustic patterns from calibration
and the raw data measurement. In order to find where the PSF has the sharpest features, we must
determine the distance of the ”focal” length of the diffuser. We did this manually by adding and taking
away playing cards (any stackable objects can serve this function) to achieve the clearest caustic
pattern. An aperture made from black cardboard is placed on the diffuser to limit the amount of light
hitting the sensor. Our DiffuserCam can be seen in Fig. 17, attached to the far end of the cardboard
box.

To calibrate the system, an LED placed in front of the cardboard pinhole aperture is used as
a point source. The field of view of the system is defined through calibration, determining where
the object being imaged should be placed. This is achieved by moving the point source laterally
at different depths and observing the shift of the PSF, ensuring that the features of the object will
be distinguished on the sensor. The LED point source is attached to the ruler that can be shifted
easily along the cardboard box. A dark background is required for the best illumination of the object,
so our images will be captured in a dark room inside the closed box. The PSFs and the raw data
measurement are then downloaded to our code for 3D image reconstruction.
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Fig. 17: Our setup for DiffuserCam. The RaspberryPi sensor (a) is placed at a set distance away from the diffuser, made
from tape (b), which covers a small cardboard aperture. Playing cards are observed to the right and left of (a) and (b) to
separate the two. Our LED point source (c) can be shifted closer and further away from the DiffuserCam using the ruler
to take the PSF data measurements for system calibration.

Software

An online tutorial was created for users to build a DiffuserCam and implement the code for 2D
image reconstruction. Both Gradient Descent and ADMM Colab notebooks are available online [11].
For 3D image reconstruction, the original DiffuserCam team created an open source code in MATLAB
that executes ADMM in just 5 iterations, found on GitHub [12]. In order to make the code easier to
use and understand, we implemented it in Colab, adding text explanations and extra comments within
the code so future users can follow along easily. The code can be found here: https://colab.
research.google.com/drive/1aWyWku5FLhUjuIF8yXrUKQD32Vi1VSr1?usp=sharing.

Using variable splitting, Lagrange multipliers, and penalty parameters, ADMM allows for a
relatively fast 3D image reconstruction. It starts with the basic optimization problem stated in the
Theory section:

v̂ = argmax
v≥0

1
2
‖ b−Hv ‖2

2 +τ ‖Ψv ‖1 . (2)

The minimization problem is then split into multiple minimization problems to better fit ADMM.

v̂ = argmax
w≥0,u,x

1
2
‖ b−Cx ‖2

2 +τ ‖ u ‖1

s.t. x = Mv,u = Ψv,w = v.
(3)

Here, the transfer function of DiffuserCam, H, has been split into two variables: M, the convolution,
and C, the crop. The constraints imposed add more update steps to the algorithm.
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Next, the augmented Lagrangian is formed, translating the equation to:

L(u,x,w,v,ξ,η,ρ) =
1
2
‖ b−Cx ‖2

2 +τ ‖ u ‖1

+
µ1

2
‖Mv− x ‖2

2 +ξ
T (Mv− x)

+
µ2

2
‖Ψv−u ‖2

2 +η
T (Ψv−u)

+
µ3

2
‖ v−w ‖2

2 +ρ
T (v−w)

+1+(w),

(4)

where 1+(w) comes from the constraint w≥ 0:

1+(w) =

{
∞, w<0
0, w≥ 0

(5)

Finally, to minimize the objective function, the Lagrangian dual approach is to solve the optimiza-
tion problem:

maximize
ξ,η,ρ

min
u,x,w,v

L({u,x,w,v},{ξ,η,ρ}). (6)

In this equation, we jointly minimize the primal variables (u,x,w,v) first, and then maximize the
dual variables (ξ,η,ρ). The algorithm then updates each individual variable. The updates are as
follows:

uk+1← T T
µ2
(Ψvk +ηk/µ2)

xk+1← (CT C = µ1I)−1(ξkMvk +CT b)

wk+1←max(ρk/µ3 +vk,0)

vk+1← (µ1MT M+µ2Ψ
T

Ψ+µ3I)−1rk

ξk+1← ξk +µ1(Mvk+1− xk+1)

ηk+1← ηk +µ2(Ψvk+1−uk+1)

ρk+1← ρk +µ2(vk+1−wk+1)

where

rk = (µ3wk+1−ρk +Ψ
T (µ2uk+1−ηk)+MT (µ1xk+1−ξk)

(7)

For more background information on ADMM, refer to [13], sections 2 and 3 of [14], and Chapters
5 and 9 of [15].
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3.3 Speckle Imaging

Theory

A speckle pattern is formed when a coherent light source like a laser passes through a scattering
media. The light will be randomized by the scattering media, and as the light propagates through
space, the random components will interfere with each other, resulting in a random intensity fluctua-
tion known as a speckle [16]. A typical speckle pattern is as shown in Fig. 18. The scattering of light
waves makes it impossible to see through scattering medium. However, the memory effect states
that when light is transmitted through a medium, the phase of the optical field is remembered during
transmission. This means that we can still extract information from speckle patterns. However, the
memory effect has a very strict constrain on the objects:

∆x� u ·λ/πL

where u is the distance between object and the scattering medium, ∆x is the distance between the
end points on the object, λ is the laser wavelength, and L is thickness of the diffuser.

Fig. 18: Example of a typical speckle pattern captured by a camera [17].

Although speckle patterns seem to have a disorderly nature, it does have some important
statistical properties. Distribution of the intensity of a speckle pattern should be negative exponential,
phase distribution should be uniform, and the amplitude should be Rayleigh distributed [16]. We
can use these properties to make sure that acquired speckle patterns are reasonable by fitting the
magnitudes of the pixels to a negative exponential curve.

In our speckle imaging system, we illuminate an object with the speckle pattern produced by
a laser and a diffuser, our chosen scattering medium due to its accessibility. Then a sensor will
capture, in mathematical terms, the convolution between the speckle pattern function and the object
function. This results in another random, speckle-like image. In order to recover the original image of
the object, we first take the autocorrelation of the captured image. This process is shown in Fig. 19.

Page 19 of 35



Computational Imaging Data Science REU, HMC

Fig. 19: Speckle imaging system concept. a) An object is hidden behind a scattering medium that produces a
speckle pattern as its PSF. b) A camera captures the convolution between the hidden object and speckle pattern. c)
Autocorrelation and phase retrieval algorithms performed to reconstruct object image. Figure from Katz’s 2014 paper [4].

The reason why we take the autocorrelation of the captured image is to get rid of the presence of
the speckle pattern. Autocorrelation of the image can be expressed as:

IFI = [(O∗S)F(O∗S)] = [(OFO)∗ (SFS)] = δ∗ (OFO) = OFO (8)

In Eq. 8, the captured image I can be rewritten as the convolution between the object O and the
speckle function S; autocorrelation is denoted as F. According to the convolution theorem, we can
rewrite the autocorrelation of (O∗S) as the autocorrelation of O convolved with the autocorrelation
of S [4]. Since the autocorrelation of a speckle function is a delta function shown in Fig. 20, the result
is simply the object’s autocorrelation, shown in Fig. 21. This is because the convolution of a delta
function with any function results in said function. In fact, mathematically, the convolution between
a delta function and object function is how lenses operate because lenses can be represented as
a delta function. This creates the point to point mapping property that lenses have. For a speckle
imaging system however, after autocorrelation, we still need to recover the object with phase retrieval
methods.

Fig. 20: The autocorrelation of a speckle pattern is a delta function.
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Fig. 21: The captured image’s autocorrelation matches the object’s autocorrelation with a minimal background noise.
This shows that autocorrelation can eliminate most speckle pattern presence.

Hardware

For our speckle imaging system, we used a 5mW 650nm laser pointer as our coherent light
source. We used a laser different from the original paper’s [4] 532nm laser for safety purpose as
the experiment was performed at home. We mounted our devices onto an optical bench from an
Eisco optical set to align the optical instruments. We used two biconvex lenses to form a Galilean
telescope in order to magnify the speckle sizes to be greater than the camera pixel size. In terms
of capturing images, we placed a Raspberry Pi camera off the axis, in order to get away from the
ballistic light in the middle, which will result in saturated pixels. We used a short camera exposure
time and a low ISO number in order to capture all the speckle patterns.

In order to reduce the background noise, we set up our devices in a room without windows.
Raspberry Pi Zero’s activity light will be on while usage. Thus, we covered the act light on the
Raspberry Pi Zero with black tape. We covered the white frames in Eisco optical set for a similar
reason.

Fig. 22: Initial physical setup of the speckle imaging project.

Fig. 22 shows our initial experimental setup. We used a telescope to expand the input laser
beam in order to decrease speckle size and improve image resolution. The diffuser in the setup
would scatter light waves, resulting in a speckle pattern. The speckle pattern then illuminated the
object and propagated the image to the camera. The small speckle size later emerged as a problem,
as the camera cannot capture a speckle grain smaller than its pixel. In order to increase the speckle
size, we changed our physical setup to the one shown in Fig. 23. We stopped using the telescope
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to stop producing an expanded input beam. We also added a slit after the diffuser and added the
magnifying telescope between the slit and camera, all in pursuit of increasing speckle size.

Fig. 23: Physical setup aimed at having bigger speckle patterns.

After making sure we were getting a reasonable speckle pattern with this physical setup, we
placed an object to image between two diffusers, all located before the slit. See Fig. 24. The distance
between diffuser and camera is 5cm so we can capture as much information as possible, and the
distance between the object and the diffuser is 50cm in order to enlarge the diameter of memory
effect.

Fig. 24: Final physical setup to image objects.

Software

In parallel to building the speckle imaging setup, we developed simulations of the setup in Google
Colab to gain a baseline of what results to expect. This involved an exploration into light propagation
methods, such as Angular Spectrum (AS) and numerical calculation of the Rayleigh-Sommerfeld
(RS) diffraction integral.

Angular spectrum is commonly used for near-field propagation simulation. The AS method treats
the propagation of light as a superposition of plane waves with different wave vectors and uses a
Fourier transform to compute the light fields in the spatial-frequency domain [18]. In the AS method,
we define U(xm,yn,0) as the initial light field, and U(x,y,z) as the output light field. We also define
G(α,β,z) as the ”optical transfer function”. An optical transfer function defines how lights of different
frequencies will react to the propagation process. The idea of the AS method is to disassemble the
input light field into plane waves, convolve each of them with the optical transfer function, and add

Page 22 of 35



Computational Imaging Data Science REU, HMC

them together to get the propagated light field. We know convolution can be performed by FFT and
IFFT, which are linear operations. Thus, we do not have to actually perform the disassemble and
addition, and convolving the whole input light field with the optical transfer function will give the same
result. The algorithm is then given as

U(x,y,z) = IFFT 2{FFT 2{U(xm,yn,0)} ·×G(αm,βn,z)}

where G(α,β,z) = exp( j
√

k2−α2−β2z). Here, α and β are coordinates in the Fourier domain
and k is the wave number [18].

The direct integration (DI) method is usually used for far-field propagation. The DI method
computes the diffraction integrals in the spatial domain by means of numerical integration, which can
be treated as a linear convolution and therefore can be calculated with FFT and IFFT [18]. We have
the Rayleigh-Sommerfeld diffraction integral formula as:

U(x,y,z) =
∫∫

A
U(ς,η,0)g(x− ς,y−η,z)dςdη =

∫∫
A

U(ς,η,0)
exp( jkr)

2πr
z
r
× (

1
r
− jk)dςdη

where r =
√

(x− ς)2 +(y−η)2 = z2. In order to calculate the integral numerically, we sample the
U(ς,η,0) to N×N equidistant grids. We then use the Riemann sum to calculate the integral:

U(xm,yn,z) =
N

∑
i=1

N

∑
i=1

U(ςi,η j,0)g× (xm− ςi,yn−η j,z)∆ς∆η

where ∆ς and ∆η are sampling intervals on the observation plane. The Riemann sum in the equation
above can be seen as a convolution between the initial light field U(ςi,η j,0) and the optical transfer
function g(xm,yn,z), similarly to the AS method. Therefore, we can calculate the output light field as

U(x,y,z) = IFFT{FFT{U(x,y,0}} ·×FFT{H}]∆ς∆η,

U and H here are defined in [18] at equations (11) and (12).

During the image reconstruction process, the resolution of the reconstruction is directly related to
the size of the speckle grains. Controlling speckle size is beneficial, so we developed programs that
also allow us to engineer various speckle patterns and sizes. We witnessed that larger input beams
produced smaller speckle grain sizes and vice versa. Furthermore, this program also allows us to
analyze the statistics of speckle mentioned in the Theory section. This will help us decipher speckle
patterns from noise in the actual physical experiment.

After capturing data with the Raspberry Pi camera, the information will be processed with reverse
autocorrelation based phase retrieval algorithms. As mentioned in Theory, we perform autocorrelation
on the captured image to get rid of speckle patterns and to obtain the original object’s autocorrelation.
After, we need to recover the object from its autocorrelation. We followed the same image processing
methods as in the paper [4], which followed Bertolotti et al.’s [19] speckle experiment. First, we
applied a Tukey windowing function W (x,y) to our autocorrelation image I(x,y). Then, we Fourier
transformed the result to obtain the object’s power spectrum Smeas:
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Smeas(kx,ky) = |FT{W (x,y)I(x,y)}|

We ran the Hybrid-Input Output algorithm on the power spectrum function in order to quickly
fit constraints within the algorithm, followed by several iterations of the Error Reduction method to
ensure that the result will converge. Specifically, the HIO algorithm is ran with a decreasing beta
factor from β = 2 to 0, in steps of 0.04. For each β value, 40 iterations of the algorithm is performed,
with the resulting image processed with ER for an additional 40 iterations. The object constraints
used were real and non-negativity, which is mostly the case in microscopy.

Location of all simulations and code can be found https://bit.ly/39K8G79.
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4 Results

4.1 UC2 FPM

Initial trials with the system offered very poor reconstructions from the transparency images.
We noticed that the sample factor for the system was very low which was causing a very blurry
reconstruction. Our sample factor was calculated at 0.38 whereas [20] suggests a sample factor of
at least 2. After discovering this, we readjusted the spacing of the modules to include more spacing
in three places. The distance between the LED array and the z-stage was increased to 132mm, the
distance between the sample and the MO was set at 78mm, and the distance between the MO and
the HQ Raspberry Pi Camera was changed to 134mm. This increased our sample factor from 0.38
to 2.29.

Fig. 25: Subregion of an acquired brightfield image of a transparency (left) and the low-sample-factor reconstruction
(right).

Many of the acquired images from LEDs at a high angle with the sample are very dark. With
low contrast, this caused us to lose the information encoded in some of these ”darkfield” images. To
increase this contrast and preserve the information in these images, we opted to use a High Dynamic
Range (HDR) to capture the images. Without doing this, only a few LEDs from the center of the
matrix would offer enough illumination to be useful for image reconstruction.

Fig. 26: Acquired brightfield images of a honeybee leg. Left) SDR and Right) HDR.
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From these HDR intensity images, we were able to recover both intensity and phase images of
a honeybee leg. Comparing these reconstructions to the low-resolution acquired image, we can
see how much detail was recovered as the resolution was increased by a factor of four. The phase
image is also useful for noticing depth differences in the sample. For example, we can see that the
center of the leg is relatively flat and there is an area which bulges out towards the top. This type of
topographic analysis would not be available without the phase retrieval built into the FPM algorithm.

Fig. 27: Left) Intensity of acquired image (2000x2000 px), Middle) Reconstructed image from FPM (8000x8000 px), and
Right) Recovered phase information of image (8000x8000 px)

Overall, the UC2 FPM system has proven to work well. We have demonstrated the accessibility
of the system so that future research in this sub-field of computational imaging is possible.
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4.2 Diffuser Cam

We have finished setting up our system and are currently working on calibration. We are not yet
seeing caustic patterns, which we believe is due to our LED pinhole aperture letting too much light
through, which exposes the sensor to too much light. An example of our calibration images obtained
so far can be seen in Fig. 28. More work needs to be done on our setup to capture images.

Fig. 28: This measurement is a result of an LED set at low brightness placed in front of a pinhole aperture a set distance
away from the DiffuserCam. We need to continue adjusting the aperture and brightness of the LED in order to get the
caustic pattern we are looking for.

As shown in Fig. 29 (next page), we were able to reconstruct the USAF target image with the
open source example data obtained from [3]. Our results are at a lower resolution compared to that
of the Matlab code version (see Fig. 30), suggesting that the Python code we have created still
needs some debugging. There is more work to be done with increasing the speed and efficiency of
our code.
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Fig. 29: 3D image reconstruction after 300 iterations in Python. Units in px.

Fig. 30: 3D image reconstruction after 300 iterations in Matlab. Units in px.
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4.3 Speckle

Simulation

As shown in Fig. 31, we have successfully simulated the experimental setup with a valid result as
the object reconstruction looks identical to the original object. This provides proof of concept for the
speckle imaging system. In the simulation, we used a matrix with random values to mimic an actual
speckle pattern. Using a random matrix also optimizes the resolution of our image, as the speckle
size is the same as the pixel size. We used various propagation methods when necessary. The
captured image was simulated as the convolution between the object function and the random matrix.
Once we took the captured image’s autocorrelation using FFT and IFFT methods, we were able to
reconstruct the original object with phase retrieval algorithms with the goal to reverse autocorrelation.

Fig. 31: Simulation Result with a two circle object. Captured image is convolution between object and speckle pattern.
Original object information can be observed with the image autocorrelation. The object reconstruction closely matches to
original object.

Fig. 32: Simulation Result with a rectangle object. The object reconstruction was padded to increase the image quality,
and the object was shifted manually to the center. There is some gradient color pattern occurring within the rectangle,
suggesting a less complete reconstruction. This speaks to the object dependent characteristic of computational imaging
systems.
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We were able to successfully reverse autocorrelation using methods mentioned in the Methods
section. However, there is some discussion to be had around the efficacy of the algorithms we
used. While the object reconstruction in Fig. 31 looks nearly identical to the original object, this
isn’t necessarily the case for all objects. For computational imaging systems, it is often the case
that quality of reconstructed images are object dependent. For lens imaging system, the quality
of images is system dependent. This means that reconstruction for objects with little sparsity or
many details will result in a poorer reconstruction. The two circle object we chose to simulate in Fig.
31 is quite simple and has enough sparsity to produce a successful reconstruction. However, the
rectangle object in Fig. 32 results in a slightly poorer reconstruction because of its lessened sparsity.

Furthermore, in each phase retrieval algorithm, we only used spatial domain constraints of
realness and positivity, but perhaps adding appropriate Fourier domain constraints might further
improve reconstruction quality.

It is also important to consider the time that the reconstruction takes. Analyzing the efficiency of
our reconstruction methods was the not the focus of our project, but it is important to note that we
observed algorithm running times of several minutes, sometimes hours depending on the complexity
of image. We also observed that running algorithms using local servers such as Jupyter notebook,
rather than shared servers such as Google Colab, sometimes increased the running speed.

Experiment

For the physical experimental setup, we were able to build the speckle imaging system. We have
been able to capture a speckle pattern by shining the laser through a diffuser, as shown in Fig. 33.
We have reduced background noise to a reasonable level, and we have been able to image objects
shown in Fig. 34 and Fig. 35. However, we are still in the process of capturing object images with
higher complexity, since the size of object is constrained by the memory effect diameter:

∆x� u ·λ/πL

where u = 50cm is the distance between the object and the diffuser, ∆x is the distance between
points on the object, λ = 650nm is the laser wavelength, and L = 1mm is thickness of the diffuser.
We therefore need an object with size smaller than 0.01cm; in the original paper [4], the author used
an object with 40um diameter.

Fig. 33: Speckle pattern captured with our physical setup.

We first imaged an object of a circle with a 1 mm diameter because we didn’t have access to
smaller objects in a non-laboratory setting. As shown in Fig. 34, the circle shape can be resolved in
the object reconstruction. The image during the processing stage has also been padded to produce
a clearer reconstruction. However, because the circle shape is simplistic, we performed another trial
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Fig. 34: Experimental result of a circle object. The circle can be clearly seen, which indicates a successful reconstruction.
However, due to the simplistic nature of the object, more trials should be run to make sure that the reconstruction is not
an artefact.

on a different, slightly more complex object of two dots to make sure that the circle reconstruction is
not just an artefact.

Fig. 35: Experimental result of an object of two dots. Two dots can be made out but the edges of the dots are not distinct.

As shown in Fig. 35, the object reconstruction was successful as you can decipher out two
circles, which gives us confidence that the single circle reconstruction was also successful. The
image quality of the reconstruction could definitely be improved upon as there aren’t distinct edges of
the two circles. The blurry quality of both reconstructions could also be attributed to the fact at both
object diameters of 1 mm were outside the memory effect limitation. This means that the objects we
imaged were too large in size to produce completely accurate reconstructions.

Overall, our results show that our speckle imaging system and the reconstruction algorithms work
but there are many limitations, such as image processing times and object diameter limits. More
work should should be done to have the imaging system perform at its full potential.
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5 Potential Future Work

5.1 UC2 FPM

The FPM algorithm lends itself to many different imaging modalities. Future work could include
implementing some of these with our UC2 system such as Fourier Ptychographic Tomography for
thick sample imaging and the recovery of complex indices of refraction [21].

Work can also be done to improve image acquisition time as currently, exposing each of the
images and uploading them can take up to an hour. Future students might consider implementing
Multiplexed FPM [22] and Self-Learning FPM [23] to improve acquisition time and reduce unnecessary
redundancy in acquired data.

5.2 Diffuser Cam

There has been work done in the incorporation of Deep Learning with ADMM [24] to increase
computation speed and image quality. Moving forward, we would expect to explore the use of
Machine Learning techniques with gradient descent. We have been reading papers such as [25]
and [26] and plan to conduct an in depth literature review to gain a better understanding on previous
work in the field.

5.3 Speckle

For future work in a lab, imaging objects within the memory effect diameter limit is definitely a
top priority. Being able to do this will help produce better reconstructions and continue to showcase
proof of concept of our system. Furthermore, although not necessary, it might be helpful to also use
a laser driver with TTL control in order to control the laser brightness.

As mentioned previously, the HIO and ER phase retrieval algorithms have some limitations
to creating a high quality reconstruction. More in-depth analysis in terms of the object sparsity
constraints, Fourier domain constraints, and running time will be beneficial to determining the efficacy
of these algorithms. In the original paper [4], the authors mentioned that they aren’t able to overcome
some common stagnation and artefacts due to the simplicity of the algorithms for the physical
experimental results. Another reconstruction method to deploy is deep learning neural networks
for more efficient image processing. Other advanced phase retrieval algorithms to explore include
triple-correlation analysis, Knox-Thompson, and exponential filtering.

For continual development of the speckle imaging system, there shows promise in combining the
penetration power of an ultrasound scan and the precision of an optical microscopy. Blending all
these imaging techniques together could produce a computational imaging system that results in
even higher resolution and higher imaging penetration depth.
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6 Conclusion

Our summer research serves as proof of concepts for the computational imaging systems: UC2
FPM, DiffuserCam, and Speckle Imaging. These imaging systems have cleverly overcome resolution,
accessibility, and utility limitations of the conventional lens imaging system by utilizing the abilities of
a computer. The final costs of each project was under $300 (not including the cost of a 3D printer
for the UC2 FPM project), making each systems accessible to wide range of interested individuals.
Because we performed each experiment at home and had to purchase all of the necessary optical
instruments, this price point can decrease even further as most of the instruments used can be found
in a lab. This makes research and development into computational imaging and tools for microscopy
accessible to students as well. Computational imaging does have its limitations. There is still much
work to be done in the field but our work this summer has proven that computational imaging has
enormous potential in transforming the way we take images.
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